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Dark Matter Evidence

WMAP 2006
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Dark Matter

• Best evidence for new physics beyond Standard Model

• Unambiguous evidence

• Possibly connected with electroweak symmetry 
breaking, SUSY, and structure formation

• Very bright prospects for experimental observation

• Astroparticle physics: direct and indirect searches

• Particle physics: CMS and ATLAS at LHC

• Cosmology: halo profiles, CMB, BBN

J. Feng
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Direct Detection 
Requirements

• Low energy nuclear recoils (< 100 keV)

• Low rate (~1 event/ton/yr for 10-47 cm2)

• Background, background, background

• Detector designed for “Discovery”



New Technologies
• Germanium crystals (CDMS iZips, 

Edelweiss)

• Bubble chamber (COUPP, PICASSO)

• Xenon

• 1-Ph: XMASS

• 2-Ph:LUX, XENON

• Argon

• 1-Ph:DEAP,CLEAN

• 2-Ph: DarkSide, WARP, ArDM



Elements for a 
“Discovery” Detector

• Low threshold energy (few keV)

• Large mass for high sensitivity (>1 ton)

• Low Background (<<1event/ton/year)

• Background measurable in situ by design



CDMS

• Rejection of beta/gamma events by two 
signals: ionization and energy (phonons)

• Rejection factor of bulk electron events: 
~106

• Rejection factor for surface electrons 
(210Pb) improved significantly with iZIP 
detectors: ~104?

• Passive shielding for neutrons with present 
plan; no in-situ measurement of background



COUPP
• Bubble chamber with ionization threshold tuned to reject 

beta/gamma events.  Visual counting of bubbles.  Rejection 
factor: ~1010

• Alpha decay produces bubbles and may be dominant 
background.  U and Th purity levels of 10-16 g/g will achieve 
limits of few events/ton/day. Difficult, but achieved by 
Borexino.  Not yet for COUPP?

• Alpha particles produce bubbles with a louder acoustic 
signal.  Acoustic discrimination can overcome U/Th 
impurities and is crucial for high sensitivity. Under 
investigation.

• Passive shielding for neutrons with present plan; no in-situ 
measurement of background



XENON
• LUX and XENON operate in 2-phase mode with 

single scintillation/ionization discrimination to 
reject beta/gamma events.  Rejection factor of 200 
achieved, 1000 seem possible with Zeplin-III design 
(High E-field).

• Self-shielding effective to reduce external gamma 
background, but at a cost of xenon for shielding.

• Vulnerable to internal beta activity.

• Lacks multiple discrimination.

• Passive shielding for neutrons with present plan; no 
in-situ measurement of background.



DarkSide-50:
a “Discovery” Experiment
• DarkSide-50 with neutron veto in CTF will have 

the ability to demonstrate extremely low 
backgrounds:

• <0.1 ev / 0.1 ton-yr

• Make credible detection claim possible with the 
observation of a few events

• Allow direct demonstration that background-free 
operation of ton-scale detector is possible
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• LAr is one of the brightest scintillators known.  Pulse shape of 
primary scintillation provides very powerful discrimination for 
NR vs. EM events:

Rejection factor exceeds 108 for > 60 photoelectrons (Boulay 
& Hime 2004; Benetti et al. (WARP) 2006)

• Ionization drift is well established technology on very large 
scale detector.  Ionization:scintillation ratio is a strong and 
semi-independent discrimination mechanism:

Rejection factor ~102 (Benetti et al. (ICARUS) 1993; Benetti 
et al. (WARP) 2006)

• Spatial resolution from ionization drift localizes events, allowing 
rejection of multiple interactions, "wall events", etc.

• Two-phase LAr-TPC combines these characteristics into a 
powerful detection technique, as established by WARP

Discrimination in Argon
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• Our approach (F. Calaprice): rely on (n,α) on 10B

• Alpha particle extremely low range

• Alpha particle can be observed using borated 
liquid scintillator ... remember BOREX?

• 99.8% efficiency for radiogenic neutrons with ~1 
m thick shield

• Many 9’s of efficiency possible with thicker 
shields for radiogenic neutrons not captured 
within detector

Neutron Veto



• Integration of water and scintillator purification 
plants (distillation column, counter-current water 
extraction column, stripping column) 

• Availability of second purification plant under 
construction by Princeton University for purification 
of scintillator fluors

• Unique expertise of Borexino collaboration in 
handling of scintillators and low background 
techniques

Benefits of BX integration
to DarkSide



• Radioactive 39Ar produced by cosmic rays in 
atmosphere

• beta decays, Q = 565 keV, t1/2 = 269 years

• In atmospheric argon:

• 39Ar/Ar ratio 8×10-16

• specific activity 1 Bq/kq

• Limits size (and sensitivity) of argon detectors to 
500-1000 kg due to 39Ar events pile-up

Why is depleted argon from 
underground so crucial?



• 39Ar-depleted argon available via centrifugation or 
thermal diffusion, but expensive at the ton scale!   

• 39Ar production by cosmic rays strongly suppressed 
underground

• Motivated by success in Borexino
• Low background from 14C crucial for observation 

of low energy neutrinos with organic liquid 
scintillators.
• Hydrocarbons in deep underground reservoirs 

results in low cosmogenic 14C

Why is underground 
argon desirable?



Counter for Underground DAr Measurement
39Ar Counter Design
Passive Shielding:
2” OFHC Copper
8” Lead Shielding (210Pb 

~65Bq/kg)
Active Shielding:
2” Plastic Scintillator Veto, 

~2PI S.A Coverage
Background in (100,600)keV:
~0.3Bq at sea level

Original Setup:
Ar mass: LAr ~1kg
WLS: TPB
PMT R6233-100
25” Acrylic Light Guide
Lose 50% Light

Upgrading…
Ar mass: LAr ~0.7kg
High Crystallize Teflon Cup
WLS: TPB/PTP
PMT R11065, No Light Guide
Kimballton Mine (~1500m.w.e)



• Kinder Morgan Doe 
Canyon complex 
(Cortez, CO)
• Ar ~400 ppm in 

underground gas

• 39Ar level: factor 25 
reduction or greater

• Total Ar production 
capacity: 3 tons per day

Underground 
Argon



Princeton Prototype Plant for Industrial Scale Production: 
Achieved 0.5 kg/day (depletion >25)

News: NSF funding (NSF PHY-0811186), goal ~10 kg/day in 2010



Princeton Prototype Cryogenic Distillation Column @ FNAL PAB



Princeton Prototype Cryogenic Distillation Column @ FNAL PAB



Backgrounds



DarkSide-10 Prototype

• A (relatively) simple and (relatively) fast turn-
around full-featured 2-phase TPC
• A testbed for learning the technology and 
testing features to use on later detectors
• Partially-sealed transparent inner vessel
• High light-yield design
• Transparent conducting windows for anode 
and cathode
• Submerged low-background, high-QE 
Hamamatsu R11065 3” PMTs
• Demonstrate gas pocket control for 2-phased 
operation
• α source deployment to study surface 
background



10-kg 2-Phase Detector



First deployment
March-July 2010
Scintillation-only, 
no field cage

7-R11065 3” PMTs

boiling and
level-sensor
tubesacrylic inner vessel

50-kV feed
Steel compression 

plate & rods

1-R5912-02 8” PMT

TPB-coated acrylic window

TPB-coated reflecting foils

level-control bubbler



511 keV

Gas filling top of boiling tube

Bubbling into main pocket via
   transfer line

Lowering level to output bubbler

Light-yield from 22Na
spectrum in coincidence

with external NaI counter.
From 511 keV line, estimate 

4-5 p.e./keVee

Small change (-6%) in double 
phase configuration

Create, monitor, and
maintain gas pocket

for 2-phase TPC

First Deployment Results



Second deployment – October 2010

ITO-coated
acrylic cathode 
window

Field cage flexPCB,
etched extraction grid

LN2-powered
coldhead
(movie!)



DarkSide-10 Results
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Beta/Gamma Nuclear Recoil

DarkSide-10 Results



Beta/Gamma Nuclear Recoil

DarkSide-10 Results
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Rn-Free Clean Room



Evaporator & Test Unit



Funding - USA
• The NSF funded the proposal submitted by the US groups for DarkSide-50 in 

September 2010, awarding Grant NSF PHY-1004072 ($875k for FY2010), with 
the bulk of funds for FY2010 to be spent primarily on the refurbishment of the 
CTF under the new CTF-RD program

• Institutions awarded: Augustana, Houston, Princeton, Temple, UCLA, UMass 
Amherst

• Collection of depleted argon target independently funded by NSF Grant 
PHY-0811186 to Princeton University ($1.7M for FY2010-11)

• R&D Grants NSF PHY-0919363 ($3.5M), PHY-0704220 ($1.9M)

• Cavity Ring-Down Spectroscopy trace gas analyzers for the measurement of 
ultra-trace contaminations of O2, N2, and H2O in development at and at Black 
Hills State University supported by Grants NSF PHY-0903335 and NSF 
MRI-0923557

• Final purification of the depleted argon at Fermilab, with cryogenic distillation 
column procured by the Princeton group with funding from NSF Grant 
PHY-0811186

• DarkSide-50 received stage 1 approval as project E-1000 from the Fermilab 
directorate in January 2010



Funding - Italy

• In September 2010 INFN approved the proposal for 
CTF-RD and allocated €100,000 in FY2011 for the 
borated scintillator and for a portion of the 
photosensors for the neutron and muon vetoes. 

• Additionally, €160,000 allocated as part of the Borexino 
FY2011 funding for the upgrade of the electronics of 
CTF-RD, under the acknowledgment that the 
electronics of CTF-RD will serve as a prototype for a 
future upgrade of the Borexino electronics.



DS-10 and DS-50
Schedule

• DS-10

• Summer 2011

• DS-50 ID

• End of 2011

• Neutron Veto

• Summer 2012



• DS-10

• 2011

• DS-50

• 2012

• Ton-Scale Detector: DS-1k

• 2014

• Ten-ton Scale Detector: DS-20k (DS-50k?)

• 2017-9

• Requires much deeper Lab.  Jinping?

The DarkSide Program



Cooperation w IHEP

• Science

• Technology

• Low Background

• Training

• Development Underground Lab Space



The End

Like the jelly beans in this 
jar, the Universe is mostly 
dark: 96 percent consists 

of dark energy (about 
70%) and dark matter 

(about 26%). Only about 
four percent (the same 
proportion as the lightly 
colored jelly beans) of 

the Universe - including 
the stars, planets and us - 

is made of familiar 
atomic matter.


